Development of a swine-specific fecal pollution marker based on host differences in methanogen mcrA genes.

نویسندگان

  • Jennifer A Ufnar
  • David F Ufnar
  • Shiao Y Wang
  • R D Ellender
چکیده

The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.

منابع مشابه

Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene.

Methanogens (domain Archaea) have a unique role in the carbon cycle as producers of the greenhouse gas methane (CH(4)). Methyl-coenzyme M reductase (MCR) is a vital enzyme in CH(4) production, and the mcrA gene coding for a subunit of MCR has been employed as a specific marker for the detection and differentiation of methanogen communities. A critical step in assessing environmental mcrA divers...

متن کامل

Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge.

Methanogens in anaerobic ammonia-rich digesters show differential responses to ammonia stress. The mechanism for this is poorly understood. In the present study, we determined the rates of methane production, the composition of methanogen mcrA (the gene coding for the alpha subunit of methyl-coenzyme M reductase) and their transcripts in response to ammonium addition in the anaerobic sludge ret...

متن کامل

The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill.

Inferred amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from five different methanogen species were aligned and two regions with a high degree of homology flanking a more variable region were identified. Analysis of the DNA sequences from the conserved regions yielded two degenerate sequences from which a forward primer, a 32-mer, and a reverse primer, a 23-mer, could be de...

متن کامل

Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters

Microbial source tracking (MST) endeavors to determine sources of fecal pollution in environmental waters by capitalizing on the association of certain microorganisms with the gastrointestinal tract and feces of specific animal groups. Several decades of research have shown that bacteria belonging to the gut-associated order Bacteroidales, and particularly the genus Bacteroides, tend to co-evol...

متن کامل

Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin.

The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 16  شماره 

صفحات  -

تاریخ انتشار 2007